Multiobjective DC Programming with Infinite Convex Constraints
نویسندگان
چکیده
In this paper new results are established in multiobjective DC programming with infinite convex constraints (MOPIC for abbr.) that are defined on Banach space (finite or infinite) with objectives given as the difference of convex functions subject to infinite convex constraints. This problem can also be called multiobjective DC semi-infinite and infinite programming, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. This problem has not been studied yet at present. Necessary and sufficient optimality conditions for weak Pareto-optimality are introduced. Also, we seek a connection between multiobjective linear infinite programming and MOPIC. The Wolfe and Mond-Weir ∗This work was supported by the National Science Foundation Grant of China (No. 10926077). This work was supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. HIT.NSRIF.2009074) and program of excellent Team in Harbin Institute of Technology. This work was supported by both China Post-doctoral Science Foundation (No. 01107172) and Heilongjiang Province Post-doctoral Science Foundation (No. 01106961). This work was also supported by NOLF R-314-000-080-720 †Email address : [email protected] dual problems are presented and the weak, strong and strict converse duality theorems are also derived. The results obtained are new in both semi-infinite and infinite frameworks.
منابع مشابه
Characterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints
This paper studies the convex multiobjective optimization problem with vanishing constraints. We introduce a new constraint qualification for these problems, and then a necessary optimality condition for properly efficient solutions is presented. Finally by imposing some assumptions, we show that our necessary condition is also sufficient for proper efficiency. Our results are formula...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملTwo-Level Optimization Problems with Infinite Number of Convex Lower Level Constraints
This paper proposes a new form of optimization problem which is a two-level programming problem with infinitely many lower level constraints. Firstly, we consider some lower level constraint qualifications (CQs) for this problem. Then, under these CQs, we derive formula for estimating the subdifferential of its valued function. Finally, we present some necessary optimality condit...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملA General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming
For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints, we define a new gap function that generalizes the definitions of this concept in other articles. Then, we characterize the efficient, weakly efficient, and properly efficient solutions of the problem utilizing this new gap function. Our results are based on $(Phi,rho)-$invexity,...
متن کامل